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I. INTRODUCTION

The many-body problem in atoms and ions is most often treated in a Hamiltonian formal-

ism. As a starting point the many-electron Schrödinger equation, or a relativistic extension

of it, is treated with many-body perturbation theory (MBPT) [1], and quantum electrody-

namic (QED) corrections are then included as perturbations. An example of the first part of

this approach is the MBPT treatment of the lithiumlike [2] and sodiumlike [3] isoelectronic

sequences, where a Hartree-Fock potential is taken as a starting point of a perturbation

expansion that includes Coulomb interactions through third order, instantaneous Breit in-

teractions through second order, and the effect of retardation on the Breit interaction in

lowest order. In these early works discrepancies with experiment were used to infer the

QED corrections, but since then the direct calculation of the one-loop Lamb shift has been

carried out [4], and the bulk of the discrepancy is removed when the one-loop Lamb shift is

added to the MBPT results.

While this approach is successful in accounting for the spectra of the above mentioned

sequences at the few tenths of an eV level, subtle effects relating to retardation and nega-

tive energy states begin to be important when levels under 0.1 eV are reached in modern

experiments for high-Z ions [5–7]. It is rather complicated to restore the effect of negative

energy states, which are usually omitted from Hamiltonian treatments in order to avoid the

continuum dissolution problem [8], and in addition the treatment of retardation is problem-

atical [9]. These issues can be avoided altogether if the Hamiltonian formalism is simply

abandoned, and replaced with the Feynman diagram oriented approach offered by S-matrix

theory [10], which will be used here, or the essentially equivalent Green’s function techniques

used by the St. Petersburg group [11].

The application of either QED-based theory to highly-charged ions is analogous to the

QED treatment of the electron anomalous magnetic moment, where evaluation of a limited,

unambiguous set of Feynman diagrams accounts for all relevant physics up to a given preci-

sion governed by powers of the fine structure constant α. For highly-charged many-electron

ions, the relevant expansion parameter is the number of virtual photons in the Feynman dia-

grams, with factors of α or 1/Z providing strong suppression of diagrams with three or more

photons. For this reason, only the relatively few diagrams involving one or two photons need

to be treated, although weak-field expansion in the parameter Zα, which simplifies the treat-
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ment of light systems, is not suitable for high-Z ions and bound state electron propagators

have to be used. Residual contributions from the large number of three-photon graphs have

not yet been calculated with QED methods. They are dominated by correlation diagrams

involving photon exchanges between different electrons, and, as will be discussed below, can

be approximated by using the Hamiltonian method described in the first paragraph. This

QED approach has been implemented for highly-charged lithiumlike ions in Refs. [11] and

[12]. The latter paper concentrated on a single transition energy, the 2s − 2p3/2 splitting

for lithiumlike bismuth, and used basis set techniques to evaluate two-photon exchange dia-

grams. In this paper, we replace the basis set techniques with differential equation methods

and give a complete treatment of the 2s, 2p1/2 and 2p3/2 energy levels as well as the 2s−2p1/2

and 2s− 2p3/2 transition energies along the isoelectronic sequence.

Three additional theoretical issues enter when high precision is required. The first has to

do with the finite mass of the nucleus, which leads to recoil corrections. While suppressed

by a factor of m/M , where m is the electron mass and M the mass of the nucleus, these

corrections, which are highly nontrivial to calculate, must be included. The second issue

is higher-order contributions to the Lamb shift, specifically the two-loop Lamb shift. This

effect is sufficiently large at high Z that its value was inferred in Ref. [12] for lithiumlike

bismuth, but, as with the one-loop Lamb shift, it can now be calculated directly [13, 14].

Finally, the polarizability of some nuclei is large enough that a small but non-negligible

effect results. These nuclear polarization corrections have been studied for the n = 2 states

of heavy lithiumlike ions [15] and will be included in the present ionization and transition

energies.

In our previous work [12] we showed that essentially identical results were obtained re-

gardless of the model potential used to define the QED representation. Here we specialize

to the Kohn-Sham potential [16], a self-consistent local potential similar to the Dirac-Fock

potential. In the next section, the S-matrix formalism is described, and the Kohn-Sham

potential defined. In Sec. III, one-photon diagrams are treated. In Sec. IV, two-photon dia-

grams, with the exception of the two-loop Lamb shift, are evaluated. In Sec. V, the smaller

corrections from three-photon diagrams, nuclear recoil, two-loop Lamb shift and nuclear

polarization are discussed. The main result of the paper is a comprehensive tabulation of

the ionization potentials of the 2s, 2p1/2, and 2p3/2 states for Z = 10 − 100, along with the

2s − 2p1/2 and 2s − 2p3/2 transition energies. For the sake of brevity, only the complete
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theoretical result is presented for the isoelectronic series, but to illustrate the importance of

the various corrections, the breakdown of contributions for a few ions along the isoelectronic

sequence will be given in a separate table. A discussion of the comparison of the present

theory with experiment and other calculations, along with directions for future progress, is

given in the concluding section.

II. S-MATRIX FORMULATION

S-matrix calculations [10] of atomic structure use the fact that energy levels of an atom

can be related to matrix elements of an operator that evolves the atom from t = −∞ to

t = ∞,

Sǫ,λ = T
(

e−iλ
∫

dte−ǫ|t|HI(t)
)

, (1)

through E = E0 + ∆E, where

∆E = lim
ǫ→0

iǫ

2
lim
λ→1

∂

∂λ
ln〈Φ0|Sǫ,λ|Φ0〉. (2)

Here E0 is the energy of the atom at times t = ±∞, where the interaction Hamiltonian,

defined below, is suppressed by the adiabatic damping factor ǫ. For the isoelectronic sequence

we will be treating here, the state |Φ0〉 can be represented in a manner identical to that used

in MBPT,

|Φ0〉 = a†v |0c〉, (3)

where v represents a valence electron and |0c〉 a filled heliumlike core. The wave functions are

defined by the interaction representation chosen to define HI , and obey the Dirac equation

in a spherically symmetric potential U(r),

[~α · ~p+ βm+ U(r)]ψn(~x) = ǫnψn(~x), (4)

where r = |~x|. Natural units in which h̄ = c = 1 are used in this work unless otherwise

specified. The lowest-order energy E(0) is given by

E(0) = ǫv + 2ǫa, (5)

where a represents the 1s1/2 core state. The second term in the above formula for E(0), which

does not contribute either to valence ionization or transition energies, will be suppressed in
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the following, and this convention will be followed for the higher-order corrections considered

in this paper.

While there are sufficiently few electrons in lithiumlike ions that reasonable results can

be obtained starting from the Coulomb potential

UC(r) = −
Znuc(r)α

r
, (6)

we instead choose to incorporate some screening by using the Kohn-Sham potential [16]

defined by

UKS(r) = UC(r) + α
∫

dr′
1

r>
ρt(r

′) −
2

3

[

81

32π2
rρt(r)

]1/3α

r
, (7)

where

ρt(r) = g2
v(r) + f 2

v (r) + 2
[

g2
a(r) + f 2

a (r)
]

. (8)

Here g(r) and f(r) are the upper and lower components of Dirac wave functions self-

consistently determined, v is the 2s valence electron, and Znuc(r) accounts for the finite

size of the nucleus using a Fermi distribution with parameters taken from [17], except for

thorium and uranium where the c parameters are changed from 6.9264 and 6.9868 fm in [17]

to 7.0598 and 7.13753 fm as deduced from measurements [18, 19]. A related potential that

will arise in the treatment of screening of the Lamb shift is the core-Hartree (CH) potential

defined by

UCH(r) = UC(r) + α
∫

dr′
1

r>

ρc(r
′) (9)

with

ρc(r) = 2
[

g2
a(r) + f 2

a (r)
]

. (10)

Neglecting core energies, the binding energies ǫv associated with the Kohn-Sham potential

are shown as E(0) for a few lithiumlike ions in Table I.

When dealing with free-electron processes, the most appropriate treatment of QED is the

interaction representation, which is a unitary transformation that subtracts the free-electron

Hamiltonian H0 from the full Hamiltonian. Early applications of QED to the bound state

problem were primarily concerned with hydrogen and employed a different kind of interaction

representation known as the Furry representation [20] in which the interaction of the electron

with the Coulomb field of the nucleus is also kept in H0. Specifically, the transformation

from a Schrödinger picture wave function |ΨS〉 to a Furry picture wave function |ΨI〉 is

|ΨI〉 = eiH0t|ΨS〉, (11)
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where

H0 =
∫

d 3xψ†(~x, t) [~α · ~p+ βm+ UC(r)]ψ(~x, t), (12)

and the interaction Hamiltonian is defined as

HI(t) = e
∫

d 3x ψ̄(~x, t)γµA
µ(~x, t)ψ(~x, t), (13)

with normal ordering understood. This formalism applies equally well to the case when the

Coulomb potential UC(r) in Eq. (12) is replaced with a non-Coulomb local potential U(r),

chosen here to be UKS(r), providing that a counter-potential term is added to the interaction

Hamiltonian,

δHI(t) =
∫

d 3xψ†(~x, t) [UC(r) − U(r)]ψ(~x, t). (14)

When the field operators in the above are replaced with specific wave functions, we encounter

the frequently occuring matrix element

Ũij ≡
∫

d 3xψ†
i (~x) Ũ(r)ψj(~x), (15)

where Ũ(r) ≡ UC(r)−U(r) = UC(r)−UKS(r) here. In this paper we will be concerned with

terms up to fourth order in HI(t) and second order in δHI(t), which correspond to Feynman

diagrams with up to two virtual photons.

III. ONE-PHOTON PHYSICS

The diagrams involving one photon are shown in Fig. 1. If we define the matrix element

gijkl(E) = α
∫

d 3x d 3y
eiE|~x−~y|

|~x− ~y|
ψ̄i(~x)γ

µψk(~x) ψ̄j(~y)γµψl(~y), (16)

the one-photon exchange term of Fig. 1a and the counter-potential term of Fig. 1b give the

energy shift

E(1) =
∑

a

[(gavav(0) − gavva(Eva)] − Ũvv, (17)

where Eva = ǫv − ǫa. This part of one-photon physics we refer to as structure-related, as we

will do with any diagram that has, as a limit, an expression from MBPT. Specifically, while

we work in the Feynman gauge, were we to work in the Coulomb gauge, the Coulomb photon

part of E(1) would exactly reproduce first-order MBPT results when only Coulomb inter-

actions are included. We note here that because we use a local potential, gauge invariance
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ensures that a complete Coulomb gauge calculation, including retarded transverse-photon

exchange, would reproduce the results of the present Feynman gauge calculation. The con-

tributions of E(1) are given in Table I. We present only its real part, but note that an

imaginary part, related to the decay rate of the ion, is also in general present. While this

plays no role in one-photon exchange, it will play a role in the two-photon calculations

described below.

More difficult to evaluate are the radiative diagrams of Figs. 1c and 1d for the one-loop

vacuum-polarization and self-energy, respectively. The vacuum polarization term in the

Uehling approximation is given by

EVP
Uel =

α2

4π2

∫ 1

0
dy

y2(1 − y2/3)

1 − y2

∫

d 3xψ†
v(~x)ψv(~x)

∫

d 3r
e
− 2m|~x−~r|√

1−y2

|~x− ~r|
~∇2

r

(

Zeff(r)

r

)

, (18)

where Zeff(r) = −r UKS(r)/α is the effective charge for the Kohn-Sham potential. In addi-

tion, Wichmann-Kroll [21] corrections EVP
WK, must be added. We have developed techniques

for the evaluation of both parts of the vacuum polarization calculation. The Wichmann-

Kroll part of the calculation, in particular, is similar to the self-energy calculation and

involves partial wave expansions in configuration space using numerical bound-state Green’s

functions. Our method has been described in Ref. [22]. The present vacuum polarization

results are shown as “Uehling” and “WK” in Table I.

The self-energy (SE) can be written as ESE
1γ = Σvv(ǫv), where

Σjl(ǫ) ≡ −ie2
∫

d 3x
∫

d 3y
∫

dnk

(2π)n

ei~k·(~x−~y)

k2 + iδ
ψ̄j(~x)γµSF (~x, ~y; ǫ− k0)γ

µψl(~y), (19)

and the self-mass counterterm is understood to be included. In the above, n = 4 − ǫ is

used to regulate the integral over k, and after renormalization the limit ǫ → 0 is taken.

Here, self-energies are calculated non-perturbatively to all orders of Zα with partial wave

expansions in configuration space using numerical bound-state Green’s functions. Subtrac-

tion terms involving the free-electron propagator are evaluated in momentum space with

Fourier-transformed wave functions. Details of these calculations, with references to earlier

works, can be found in [23]. As mentioned above, we do not consider the self-energies of

the core states, but note that they enter into the two-photon calculation. As with one-

photon exchange, imaginary parts are generally present, and play a role in the two-photon

calculation. The real parts of the self-energies are presented as “SE” in Table I.
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IV. TWO-PHOTON PHYSICS

A. Structure diagrams

We begin our discussion of two-photon physics with correlation diagrams in which there

is only one electron propagator between two virtual photons that are exchanged among three

different electrons (Fig. 2a), between a virtual photon and a counter-potential (Fig. 2b) and

between two counter-potentials (Fig. 2c). Since we omit diagrams in which the photons

interact with only core electrons, there will always be one valence electron v and up to two

core electrons a and b. Defining Eij = ǫi − ǫj , we find

∆E2γ =
i6=v
∑

abi

[gbvbi(0) − gvbbi(Evb)] [giava(0) − giaav(Eva)]

ǫv − ǫi

+
i6=a
∑

abi

[gvavi(0) − gvaiv(−Eva)] [gibab(0) − gibba(Eab)]

ǫa − ǫi

+
i6=a
∑

abi

[gviva(0) − givva(−Eva)] [gabib(0) − gabbi(Eab)]

ǫa − ǫi

−
∑

abi

[gavbi(Eab) − gavib(Evb)] [gibva(Eab) − gibav(Evb)]

ǫa + ǫv − ǫi − ǫb

+
∑

abi

[gbavi(−Evb) − gabvi(−Eva)]givba(−Eav)

ǫa + ǫb − ǫv − ǫi

−
i6=v
∑

ai

[gavai(0) − gvaai(Eva)] Ũiv + Ũvi [gaiav(0) − giaav(Eav)]

ǫv − ǫi

−
i6=a
∑

ai

[gaviv(0) − gvaiv(−Eva)] Ũia + Ũai [givav(0) − givva(−Eva)]

ǫa − ǫi

+
i6=v
∑

i

Ũvi Ũiv

ǫv − ǫi
. (20)

Note that the sign of E in gijkl(E) is significant. Furthermore, there is a second kind of

contribution coming from these graphs known as derivative terms, which are sensitive to that

sign. They are associated with the i = v and i = a terms excluded in the above equation

and are given by

∆E ′
2γ =

∑

ab

g′avvb(Eva)[gvbva(0) − gvbav(Eva)] −
∑

ab

g′vbav(−Eva)[gvaba(0) − gvaab(0)]

−
∑

ab

g′vbbv(Eva)[gvava(0) − gvaav(Eva)]

+ Ũvv

∑

a

g′vaav(Eva) + Ũaa

∑

a

g′vaav(−Eva). (21)
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The second structure-related class of two-photon diagrams are shown in Figs. 2d and 2e,

which we refer to as the ladder (L) and crossed-ladder (X) diagrams respectively. They give

the energy shifts

∆EL =
i

2π

∑

aij

∫ ∞

−∞
dz

gijav(z)[gavij(z) − gavji(z −Eva)]

[ǫa + z − ǫi(1 − iδ)] [ǫv − z − ǫj(1 − iδ)]
(22)

and

∆EX =
i

2π

∑

aij

∫ ∞

−∞
dz
{

gajiv(z)givaj(z)

[ǫa + z − ǫi(1 − iδ)] [ǫv + z − ǫj(1 − iδ)]

−
gajia(z)givvj(z −Eva)

[ǫa + z − ǫi(1 − iδ)] [ǫa + z − ǫj(1 − iδ)]

}

. (23)

The analysis of these diagrams, which are structure-related inasmuch as they include con-

tributions to the second-order MBPT result, is complicated, but parallels the treatment of

the ladder and crossed ladder for excited states in helium [24], where more details can be

found. The most computationally intensive part of the evaluation of these diagrams involves

the z integration. A Wick rotation z → iω leads to terms in which the contour surrounds

poles or photon cuts plus the ω integral, which is evaluated with Gaussian integration. If

done with finite basis sets, considerable computational time is needed even when the par-

tial wave expansion of the propagators is relatively limited. To avoid this problem, we use

differential equation techniques instead. When using this method, the relative magnitudes

of the four position vectors involved must be considered, which leads to 24 regions for each

diagram (x < y < z < w, y < x < z < w, etc.). While this entails more coding than that

required for finite basis sets, the resulting programs run far more quickly, and allow us to

extend the partial wave expansion to l = 20. Use of this form of the propagator encounters

one complication of note, which involves the fact that certain intermediate states must be

excluded. As differential equation techniques implicitly include all intermediate states, they

lead to linear divergences in two of the diagrams, the ladder direct and crossed-ladder direct.

It can be shown, however, that the excluded states that cancel these divergences are equal

and opposite in sign, so we simply combine these terms to obtain a finite answer. The result

still includes certain finite terms coming from states that should be excluded, but these are

simply evaluated independently and subtracted.

The sum of the two-photon structure diagrams is denoted E(2) in Table I. It is notable

that this rather involved set of calculations gives a result quite close to the MBPT procedure
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of Ref. [2], even though MBPT excludes contributions from the negative energy states and

its treatment of retardation is less complete than the present approach. However, small

differences that are important at the level of the most precise experiments do exist. An

important example involves the 2s − 2p3/2 transition energy of lithiumlike bismuth, where

the inference of the two-loop Lamb shift requires a QED approach [12]. Specifically, the

Hamiltonian method described in the Introduction contributes 0.174 eV in second order.

While this calculation is part of the complete QED calculation, from Table I we see a very

different E(2) result of 0.052 eV. The difference of 0.122 eV is relatively small compared to

most experimental uncertainties, but the high-precision EBIT measurement [5] for lithium-

like bismuth, which has achieved an accuracy of 0.039 eV, makes it important. In particular,

since this difference is about the same size as the two-loop Lamb shift but of the opposite

sign, were MBPT to be used and combined with an accurate screened Lamb shift calculation,

agreement with experiment would have been found, and the two-loop Lamb shift would have

been inferred to be negligible. Use of the correct treatment of the structure term in Ref.

[12], however, led to a discrepancy of 0.175 eV, which was identified as due mainly to the

two-loop Lamb shift, a finding subsequently confirmed by the St. Petersburg group [13, 14]

with direct calculations.

B. Lamb shift screening diagrams

Excluding two-loop Lamb shift, the two-photon diagrams that involve radiative correc-

tions are shown in Figs. 3 and 4. We have in a previous paper [22] described the evaluation

of screening corrections to vacuum polarization, depicted in Fig. 3, and shall refer details of

these calculations to that work. The treatment of screening of the self-energy requires the

evaluation of the graphs of Fig. 4. We begin with Figs. 4a and 4b in which a self-energy

diagram is present with an exchanged photon or a counter-potential to one side. When

the intermediate propagator is represented as a spectral decomposition and has no states

degenerate with the core or valence states, the effect of these diagrams can be treated as

self-energy diagrams with one state replaced with a perturbed orbital, and we have the

contributions

ΣPO = Σvṽ + Σṽv +
∑

a

(Σaã + Σãa), (24)
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where

ψṽ(~y) ≡ α
∑

m6=v,a

∫

d 3z d 3w

|~z − ~w|

ψm(~y)

ǫv − ǫm

[

ψ̄m(~z)γµψv(~z) ψ̄a(~w)γµψa(~w)

− eiEva|~z−~w| ψ̄m(~z)γµψa(~z) ψ̄a(~w)γµψv(~w)
]

−
∑

m6=v

∫

d 3z
ψm(~y)

ǫv − ǫm
ψ†

m(~z)Ũ(z)ψv(~z) (25)

is a valence orbital perturbed either by the exchange of a photon with the core electrons or

else by the counter potential Ũ(z), and

ψã(~y) ≡ α
κm=κa
∑

m6=a

∫ d 3z d 3w

|~z − ~w|

ψm(~y)

ǫa − ǫm

[

ψ̄m(~z)γµψa(~z) ψ̄v(~w)γµψv(~w)

− eiEva|~z−~w| ψ̄m(~z)γµψv(~z) ψ̄v(~w)γµψa(~w)
]

(26)

is a core orbital perturbed by the exchange of a photon with the valence electron.

When there is a degeneracy, derivative terms arise in which either the energy dependence

of the self-energy function or the one-photon exchange part of the diagram gets differentiated.

This leads to a single expression for the valence derivative term,

Eder(v) = E(1)
v Σ′

vv(ǫv) −
∑

a

g′vaav(Eva)Σvv(ǫv), (27)

and a set of core derivative terms,

Eder(a) = Σ′
aa

∑

a

[gvava(0) − gavva(−Eva)] − Σaa

∑

a

g′avva(−Eva). (28)

These derivative terms have ultraviolet divergent parts that cancel with the vertex diagrams

discussed below. The ultraviolet divergent part comes from the part of the electron propa-

gator when it is free, so this term is treated separately. The remaining term, where the full

propagator has the free propagator subtracted to form an ultraviolet finite quantity, breaks

into two terms upon the Wick rotation k0 → iω, one in which the ω integration is carried out

numerically, and one in which double poles are encircled during the Wick rotation, which

leads to a derivative term. The ω integration has singularities at small ω that we regulate

through the device of taking ǫv → ǫv(1− δ) and ǫa → ǫa(1− δ). The resulting integrals have

a ln(δ) dependence that cancels similar behavior present in the vertex diagrams discussed

below.
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We now treat the two vertex diagrams of Figs. 4c and 4d, calling the contributions ∆Ei,

i = 1 − 5, where

∆E1 = −4iπα2
∑

a

∫

d 3x d 3y d 3z d 3w
1

|~y − ~w|

∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄v(~x)γµ

×SF (~x, ~y; ǫv − k0)γνSF (~y, ~z; ǫv − k0)γ
µψv(~z)ψ̄a(~w)γνψa(~w), (29)

∆E2 = 4iπα2
∑

a

∫

d 3x d 3y d 3z d 3w
eiEva|~y−~w|

|~y − ~w|

∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄v(~x)γµ

×SF (~x, ~y; ǫv − k0)γνSF (~y, ~z; ǫa − k0)γ
µψa(~z)ψ̄a(~w)γνψv(~w), (30)

∆E3 = −4iπα2
∑

a

∫

d 3x d 3y d 3z d 3w
1

|~y − ~w|

∫ dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄a(~x)γµ

×SF (~x, ~y; ǫa − k0)γνSF (~y, ~z; ǫa − k0)γ
µψa(~z)ψ̄v(~w)γνψv(~w), (31)

∆E4 = 4iπα2
∑

a

∫

d 3x d 3y d 3z d 3w
eiEva|~y−~w|

|~y − ~w|

∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄a(~x)γµ

×SF (~x, ~y; ǫa − k0)γνSF (~y, ~z; ǫv − k0)γ
µψv(~z)ψ̄v(~w)γνψa(~w), (32)

∆E5 = −4iπα
∫

d 3x d 3y d 3z
∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄v(~x)γµSF (~x, ~y; ǫv − k0)γ0

× Ũ(y)SF (~y, ~z; ǫv − k0)γ
µψv(~z). (33)

Here, ∆E1 and ∆E2 are the direct and exchange vertex terms of Fig. 4c for the valence

electron while ∆E3 and ∆E4 are those for the core electron. As for ∆E5, it is the counter-

potential vertex term of Fig. 4d. We can combine ∆E1 and ∆E5 because angular momentum

and parity selection rules restrict the value of ν to 0 in the former, which allows the d 3w

integration and summation over a to be carried out, leading to the screening part of the

core-Hartree potential, UCH(y) − UC(y) = α
∫

dy′ 1
y>
ρc(y

′), defined in Eq. (9). Rather than

evaluate ∆E1 and ∆E5 separately, we instead treat their sum,

∆E15 = 4iπα
∫

d 3x d 3y d 3z
∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄v(~x)γµSF (~x, ~y; ǫv − k0)γ0

×∆U(y)SF (~y, ~z; ǫv − k0)γ
µψv(~z), (34)

where ∆U ≡ U − UCH = UKS − UCH here. Note that had one used the core-Hartree

potential, so that U = UCH, ∆E15 would vanish. Similar cancelations also take place between

the valence-direct side term and the counter-potential side term arising from the first and
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third terms in Eq. (25), as well as between the valence-direct and counter-potential terms

in screened vacuum polarization calculations. The use of the core-Hartree potential thus

simplifies the evaluation of screened Lamb shifts for alkalilike ions, a fact utilized by Blundell

[25] in his QED calculations.

Besides combining ∆E1 and ∆E5 into ∆E15, a further simplification occurs for the core-

direct term ∆E3 which, like the valence-direct term ∆E1, can be shown to have only ν = 0.

In this case the core electron can be thought of as being screened by the valence electron

with the potential

Yvv(r) = α
∫

dr′
1

r>
[gv(r

′)2 + fv(r
′)2], (35)

and we can write

∆E3 = −4iπα
∑

a

∫

d 3x d 3y d 3z
∫

dnk

(2π)n

ei~k·(~x−~z)

k2
ψ̄a(~x)γµ

×SF (~x, ~y; ǫa − k0)γ0Yvv(y)SF (~y, ~z; ǫa − k0)γ
µψa(~z). (36)

No simplifications are possible for the two exchange terms ∆E2 and ∆E4 outside of noting

that they are equal to one another: their evaluation is the most challenging part of the

screening calculation.

All of the above expressions are ultraviolet divergent as n = 4−ǫ→ 4, but the divergences

arise only from terms in which both electron propagators are treated as free propagators.

For this reason we begin by evaluating ∆Ei in this approximation, denoting such terms

∆Ei(0, 0). It is possible to isolate the ultraviolet divergent part of these terms, which behave

as 1/ǫ and can be shown to exactly cancel the divergences arising from the derivative terms

mentioned above. There remains the ultraviolet finite part of ∆Ei(0, 0), which involves

certain difficulties associated with the treatment of angular momentum and the fact that

there are imaginary parts in the integrals, which are treated as described in Ref. [12].

We next form the ultraviolet finite combination ∆Ei −∆Ei(0, 0) in coordinate space. As

with the ladder and crossed-ladder diagrams, we first carry out a Wick rotation of the k0

integration, k0 → iω, which passes a set of poles. The remaining integration over ω has

the same singularities mentioned in connection with the derivative terms, and are regulated

in the same manner. The sums of all the correction terms give the screened self-energy

contributions, which are shown as “SE-screen” in Table I, along with the screened vacuum

polarization contributions which are shown as “VP-screen”.
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V. RESIDUAL CORRECTIONS

A. Three photon effects

A QED treatment of three-photon effects is a large-scale task that has not yet been

carried out. However, as discussed above, second-order MBPT roughly reproduces the full

QED calculation. For this reason, to approximate three-photon effects we simply use third-

order MBPT, including only the dominant Coulomb correction. An alternative approach

would be to use configuration-interaction (CI) techniques which can give all-order results.

To do this, one would have to carefully subtract out from the CI result the lowest-, first-,

and second-order MBPT corrections using the same potential, and would then have a more

complete treatment of higher-order corrections. However, because of the 1/Z expansion,

these corrections are already quite small and this approach is not followed here.

B. Nuclear recoil

Recoil corrections arise from the small effect of the finite mass of the nucleus. For hy-

drogenic ions, while it suffices to simply use a reduced mass Rydberg constant as an overall

scaling factor nonrelativistically, this is not valid when relativistic corrections are important.

In the hydrogenic case, an exact treatment of terms first order in recoil leads to the formula

[26]

E(n, j) = mf(n, j) +
m2(Zα)2

2Mn2
+
m2(Zα)4

M

[

−
1

2n4
+

1

2n3(j + 1/2)

]

+
m2(Zα)5

M
R(n, κ, Zα), (37)

where R(n, κ, Zα) is given in Table III of Ref. [26] and

f(n, j) =











1 +
(Zα)2

[

n− (j + 1/2) +
√

(j + 1/2)2 − (Zα)2
]2











−1/2

(38)

is the Dirac-Coulomb energy in units of mc2. While we are dealing with lithiumlike ions,

we make the approximation of using the recoil corrections in Eq. (37) for the n = 2 states

considered here. To gauge the accuracy of doing this, we note that at Z = 50 the hydro-

genic energy mf differs from the Kohn-Sham eigenvalues by only 5 percent. A comparable

screening correction to the already small recoil term can definitely be ignored.
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For many-electron systems such as the lithiumlike ions, there is an additional recoil term

given by the expectation values of the operator

HMP =
1

2M

∑

i6=j

{

~pi · ~pj + U(ri)
[

~αi + (~αi · r̂i) r̂i

]

· ~pj

}

, (39)

The first term in Eq. (39) is the mass polarization term and the second term is the leading

relativistic correction [27]. The latter has been shown in Ref. [28] to arise from the exchange

of one transverse photon in a QED formalism. The same work also showed that higher-order

contributions from the exchange of two transverse photons, though extremely small at low

Z, increase very rapidly along the isoelectronic sequence and are no longer negligible at high

Z. Indeed, for the 2p1/2 state of hydrogenic uranium, contributions from the two terms in

Eq. (39) give -0.085 and 0.068 eV for a sum of -0.017 eV, while the higher-order correction

is comparable in size at -0.013 eV. Evaluations of these higher-order corrections with QED

is non-trivial, but we find that they can be well approximated by the expectation values of

the operator 1
2M

∑

i6=j ~qi · ~qj where

~qi =
1

2
U(ri)

[

~αi + (~αi · r̂i) r̂i

]

. (40)

Indeed, hydrogenic results thus obtained consistently agree with the QED results of [28] to

within a few percent over a change of five orders of magnitude from Z = 10 to Z = 100. We

thus use the operator

Hrel
MP =

1

2M

∑

i6=j

[

~pi · ~pj + 2 ~qi · ~pj + ~qi · ~qj
]

(41)

to evaluate the relativistic mass polarization corrections for lithiumlike ions with Kohn-

Sham wave functions. Total recoil corrections as given by the sums of the hydrogenic mass

correction factor and the expectation values of Hrel
MP are tabulated as “Recoil” in Table I.

C. Two-loop Lamb shift

One of the major advances in QED bound state theory of recent years has been in the

treatment of the two-loop Lamb shift. For hydrogen, this effect must be understood precisely

before the proton size can be determined, and considerable effort had to be put into the

Zα expansion of the effect before this could be done. As mentioned earlier, at high Z the

effect, which in this case has to be calculated exactly without making the Zα expansion,
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is large enough so that it could be clearly seen when comparing theory and experiment for

lithiumlike bismuth [12]. In terms of a function G(Zα), the two-loop Lamb shift can be

parameterized as

∆E2−loop =
mα2

π2n3
(Zα)4G(Zα). (42)

The exact calculation of G(Zα) is quite complicated, but enough Z values have been eval-

uated [13, 14] that an interpolation can be made, and the results are tabulated as “2-loop”

in Table I.

D. Nuclear polarization

By far the largest uncertainty associated with the properties of the nucleus in a lithiumlike

ion is the root-mean-square charge radius. We will discuss in the next section how the use

of different values of this parameter lead to significant changes in the 2s energy. However,

a smaller effect is beginning to become important as higher precisions are reached, which is

the effect of the polarizability of the nucleus. This is a large effect in muonic atoms [29] and,

while smaller, needs to be included for highly-charged heavy ions. The graphs involved are of

the same form as the ladder and crossed ladder diagrams of Figs. 2d and 2e, with the bottom

electron replaced with a nucleus that is understood to be in an excited state. This nuclear

polarization effect from the collective nuclear excitations, including vibrations, rotations,

and giant dipole resonances, has been studied by Plenum and Soff [15] for even isotopes of

actinide nuclei. Results from that work are included in our ionization and transition energies

for some of the high-Z ions, and are listed as “NucPol” in Table I.

VI. DISCUSSION AND CONCLUSION

As we have mentioned in the Introduction, most works on high-precision calculations

of the energy levels of lithiumlike ions are based on the Hamiltonian approach for struc-

ture calculations, with QED corrections calculated separately. Examples are the relativistic

many-body perturbation theory (RMBPT) calculations of Blundell [25] and the relativis-

tic configuration-interaction (RCI) calculations of Chen et al. [30]. The works of the St.

Petersburg group [11, 14, 31–33], on the other hand, should be comparable to the present

S-matrix calculations, as both use similar QED-based approaches which treat electron cor-
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relations and radiative corrections consistently and systematically according to the number

of virtual photons exchanged between electrons. Comparing the present work with other

calculations on different contributions to the ionization and transition energies can reveal

QED effects on the structure energies not attainable in the Hamiltonian approach and show

the importance of the rigorous treatments of screened QED corrections.

In Table III, the present structure and nuclear recoil energies for the 2s−2p transitions are

presented. Also shown are the RMBPT energies of Blundell [25] which include some recoil

corrections, and the structure energies of RCI [30] and the St. Petersburg group denoted

by StPete [33]. Structure energies relative to the present results are shown in Figs. 5 and

6 for the 2s − 2p1/2 and 2s − 2p3/2 transitions, respectively. While all calculations agree

at low Z, it can be seen that RMBPT and RCI energies deviate more and more from the

present results as Z increases, demonstrating the importance of rigorous QED treatments

in calculating correlation energies beyond the no-pair approximation. It is notable that

the structure energies of the St. Petersburg group appear to scatter around our results and

deviations can be as large as 0.7 eV at Z = 90. Apparently, these discrepancies are due

mainly to the finite nuclear size effect from the use of different root-mean-square nuclear

radii in the two calculations which affects the 2s states considerably more than the 2p1/2

and 2p3/2 states, hence the similar scattered patterns in Figs. 5 and 6. While we use nuclear

radius parameters from the tabulation of Johnson and Soff [17] except for thorium (Z = 90)

and uranium (Z = 92) which are derived from measurements [18, 19], recent works of the St.

Petersburg group [14, 32, 33] use data from the tabulation of Anglei [34] except for Z = 43,

61, 85, 89, and 91 where data are not available and have to be taken from Johnson and

Soff [17] instead. Unfortunately, nuclear sizes are somewhat uncertain, and the fact that

they can lead to large, irregular discrepancies like those shown in Figs. 5 and 6 for high-Z

lithiumlike ions can be seen in the 2s − 2p1/2 structure energies of thorium which is listed

in Table III as 309.78 eV from the St. Petersburg group’s 2007 paper [33], but is given by

309.19 eV in their earlier 2001 paper [31] that is much closer to the present value of 309.13

eV. At close to 0.7 eV, this is an extremely large change. Fortunately, QED and other small

corrections are not affected by these nuclear uncertainties. Also, the works of Blundell [25]

and RCI [30] both use the same nuclear parameters as the present work. Otherwise, it will

be very difficult, if not impossible, to draw any useful conclusions from those comparisons.

As for the recoil energies, our results shown in Table III are in very good agreement
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with those of the St. Petersburg group for the 2s − 2p1/2 transition along the isoelectronic

sequence [31]. Similar agreements are found for the 2s − 2p3/2 transition where such data

are available for a few ions from the same group [14, 32, 33]. Recoil energies in Blundell and

RCI are obtained approximately from the reduced mass and mass polarization corrections

and differ slightly from the present results at high Z. For simplicity, recoil energies from

other calculations are not shown here.

In Table IV, the present one-loop and two-loop QED energies are shown and are compared

with results from other calculations. Here, Blundell’s QED energies already include estimates

of two-loop Lamb shift contributions, while those of RCI and the St. Petersburg group are

screened one-loop results only. QED energies relative to the present results are shown in

Figs. 7 and 8 for the 2s− 2p1/2 and 2s− 2p3/2 transitions, respectively. We note that QED

calculations in RCI are similar to this work and start from the Kohn-Sham potential, but only

at the one-photon level as discussed in Sec. III, and lack two-photon screening corrections

as discussed in Sec. IVB. Blundell’s QED calculations start from the core-Hartree potential

and include some screening corrections, but the vertex exchange terms ∆E2 and ∆E4 in

Eqs. (30) and (32) are not calculated. Because of these approximations, QED energies of

Blundell and RCI tend to deviate more and more from the present results as Z increases.

By contrast, QED energies from the St. Petersburg group are in very good agreement with

our results along the isoelectronic sequence, as the screened QED diagrams are calculated

correctly in both works. It is interesting to note that the relaxed QED energies from the

RCI calculations of Cheng et al. [35] are in very good agreement with the present results at

high Z. This method is relative simple in that relaxation corrections to the QED energies

of the 2s− 2p transitions are obtained by using different Kohn-Sham potentials specific to

the 2s, 2p1/2, and 2p3/2 states to calculate the one-loop radiative corrections for the initial

and final states. While it appears to give very good screened QED results, it is nevertheless

an ad hoc method that may not be suitable for systematic, high-precision calculations.

In Table V, total transition energies are compared between theory and experiment. Re-

sults relative to the present ones are shown in Figs. 9 and 10 for the 2s−2p1/2 and 2s−2p3/2

transitions, respectively. Empirical results at low to mid Z come from NIST’s online database

of atomic spectra [36], with beam-foil measurements at Z = 47 [37], 50 and 54 [38]. At high

Z, available experimental results are from electron beam ion trap (EBIT) measurements

[5, 39–42]. In general, our results are in very good agreement with experiment, while those
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of Blundell [25] and RCI [30] tend to deviate from our results and from experiment at high

Z. For the 2s − 2p1/2 transition, St. Petersburg group’s results differ from our results at

high Z for two reasons. First of all, most of their total transition energies are from the 2001

paper [31] and do not include two-loop Lamb shift corrections. This leads to the sudden

jump in their results from Z = 90 to 92, as the latter is from the 2006 paper [14] and does

include the two-loop correction. Secondly, as we have pointed out earlier, their structure

energies are different from ours because of the choices of nuclear radii. Should they use our

nuclear radius at Z = 92, their result would be in much closer agreement with ours and with

experiment. As for the 2s − 2p3/2 transition, there are only a few total transition energies

from the St. Petersburg group and they all include two-loop corrections. At Z = 83 their

result is in very good agreement with experiment, with our energy lower by about 0.08 eV.

In this case, if we use their nuclear radius, our result will go up by about 0.04 eV, in closer

agreement with their result and with experiment. Nevertheless, while we are not aware of

any total 2s− 2p3/2 transition energy at Z = 90 from the St. Petersburg group, their struc-

ture energy is higher than ours by 0.7 eV as we have shown in Table III and Fig. 6. That will

surely make the transition energy much higher than experiment and no other corrections

can come close to compensate for such a big difference.

It is interesting to note that in Fig. 6, the RCI-relax energies [35] are seen to be in

very good agreement with experiment. This is due mainly to the changes in the QED

energies after the relaxation corrections are included, but that is not the entire reason. As

we have pointed out in Sec. IVA, for the 2s− 2p3/2 transition at high Z, QED corrections

to the structure energies from the correct treatment of the ladder and cross-ladder diagrams

happen to be about the same size as the two-loop Lamb shifts but in opposite signs. Thus,

the good agreement between RCI-relax and experiment is partly due to cancelation of errors,

as neither corrections are included in those calculations.

There are other approaches that produce ionization and transition energies for the n =

2 states of lithiumlike ions. Complete tabulations along the isoelectronic sequences are

available from Cheng et al. [43] and Kim et al. [44]. Both are multiconfiguration Dirac-Fock

(MCDF) calculations that are not particularly accurate, though the latter does include

correlation corrections as derived from RMBPT energies [2]. As for the QED corrections,

the treatments in these early works are crude: Cheng et al. used estimated QED values based

on Mohr’s Coulombic results [45], while Kim et al. employed the ad hoc Welton’s method
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[46] for their calculations. Neither of these tabulations are at the same level of accuracies as

the calculations mentioned here. To our knowledge, the only complete, high-precision QED

treatment of the series is that given here.

As we have shown here, theory and experiment have reached a point where small correc-

tions such as the two-loop Lamb shift and nuclear recoil can now be studied. On a more

practical side, comparisons between theory and experiment on the transition energies of

high-Z lithiumlike ions can also be used to check, or even deduce the radii of heavy nu-

clei with high precision. The next step for the lithium isoelectronic sequence will be quite

challenging, both theoretically and experimentally. On the latter side, the achievement of

sub-0.1 eV precision requires extraordinary care, and issues of fitting resonance curves and

controlling systematics make getting another order of magnitude problematical. The very

high precision achieved for copperlike tungsten [6], however, suggests that this problem may

be overcome. If so, the challenge to theory is considerable. We have already shown that the

treatment of recoil involves approximations that will require basic progress in bound state

quantum field theory to remove. In addition, our treatment of the third- and higher-order

photon diagrams has been extremely crude, involving only MBPT with Coulomb photons.

If a QED approach is to be implemented, the correlation diagrams that give this third-

order contribution should, in principle, be replaced with QED exchange diagrams involving

three photons. In addition, the three-loop Lamb shift would have to be treated, along with

screening corrections to the two-loop Lamb shift and two-photon screening corrections to

the one-loop Lamb shift. Finally one must confront the fact that nuclear polarization effects

will start to become important. As with many other situations in atomic physics, an inter-

esting blend of advanced QED bound state theory, advances in experimental technique, and

nuclear structure theory will be involved as the lithium isolectronic sequence is studied in

future.
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FIG. 1: One-photon correlation and radiative diagrams. A cross inside a circle represents a counter-

potential.
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FIG. 2: Two-photon correlation diagrams. A cross inside a circle represents a counter-potential.
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FIG. 3: Screened vacuum polarization diagrams. A cross inside a circle represents a counter-

potential.
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FIG. 4: Screened self-energy diagrams. A cross inside a circle represents a counter-potential.
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FIG. 5: Structure energies (eV) of the 2s − 2p1/2 transition relative to the present results. Solid

rectangles: Blundell [25]. Solid circles: RCI [30]. Dotted line: St. Petersburg group [33].
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FIG. 6: Structure energies (eV) of the 2s − 2p3/2 transition relative to the present results. Solid

rectangles: Blundell [25]. Solid circles: RCI [30]. Dotted line: St. Petersburg group [33].
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FIG. 7: Screened QED energies (eV) of the 2s − 2p1/2 transition relative to the present results.

Solid rectangles: Blundell. Solid circles: RCI. Open circles: RCI relaxed QED. Open triangles: St.

Petersburg group. See Table IV for references.
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FIG. 8: Screened QED energies (eV) of the 2s − 2p3/2 transition relative to the present results.

Solid rectangles: Blundell. Solid circles: RCI. Open circles: RCI relaxed QED. Open triangles: St.

Petersburg group. See Table IV for references.
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FIG. 9: The 2s − 2p1/2 transition energies (eV) relative to the present results. Solid rectangles:

Blundell. Solid circles: RCI. Open triangles: St. Petersburg group. Crosses: Experiment. See

Table V for references.
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FIG. 10: The 2s − 2p3/2 transition energies (eV) relative to the present results. Solid rectangles:

Blundell. Solid circles: RCI. Open circles: RCI with relaxed QED. Open triangles: St. Petersburg

group. Crosses: Experiment. See Table V for references.
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TABLE I: Breakdown of contributions to the ionization potentials (a.u.) for the n = 2 states of

selected lithiumlike ions. See text for term notations.

State Terms Z = 20 Z = 40 Z = 60 Z = 74 Z = 83 Z = 92

2s1/2 E(0) -41.07821 -186.1698 -449.2213 -718.3888 -937.4309 -1201.067

E(1) -1.47173 -3.0515 -4.6537 -5.8045 -6.5674 -7.360

E(2) -0.00344 -0.0057 -0.0098 -0.0141 -0.0178 -0.023

E(3) -0.00002 0.0000 0.0000 0.0000 0.0000 0.000

Recoil 0.00069 0.0013 0.0020 0.0027 0.0035 0.005

Uehling -0.00052 -0.0094 -0.0579 -0.1656 -0.3123 -0.582

WK 0.00000 0.0001 0.0015 0.0060 0.0136 0.029

SE 0.00729 0.0896 0.3967 0.9017 1.4586 2.314

VP-screen 0.00003 0.0003 0.0013 0.0033 0.0060 0.011

SE-screen -0.00030 -0.0020 -0.0070 -0.0147 -0.0233 -0.037

2-loop -0.00001 -0.0002 -0.0009 -0.0026 -0.0046 -0.008

NucPol -0.001

Sum -42.54621 -189.1475 -453.5492 -723.4766 -942.8748 -1206.719

2p1/2 E(0) -39.78590 -183.3083 -444.4356 -711.9216 -929.7361 -1192.233

E(1) -1.43120 -2.8467 -3.9741 -4.4418 -4.5141 -4.305

E(2) -0.00743 -0.0122 -0.0226 -0.0364 -0.0502 -0.070

E(3) 0.00007 0.0000 0.0001 0.0001 0.0001 0.000

Recoil 0.00033 0.0006 0.0009 0.0012 0.0016 0.002

Uehling 0.00000 -0.0002 -0.0033 -0.0157 -0.0399 -0.098

WK 0.00000 0.0000 0.0001 0.0008 0.0025 0.007

SE -0.00022 -0.0014 0.0086 0.0570 0.1422 0.321

VP-screen 0.00003 0.0003 0.0012 0.0032 0.0060 0.012

SE-screen -0.00030 -0.0020 -0.0067 -0.0147 -0.0243 -0.041

2-loop 0.00000 0.0000 0.0001 0.0001 0.0001 0.000

NucPol 0.000

Sum -41.22462 -186.1698 -448.4315 -716.3678 -934.2122 -1196.406

2p3/2 E(0) -39.58248 -179.3907 -422.1043 -655.2997 -833.7473 -1035.279

E(1) -1.44944 -3.0233 -4.6710 -5.9317 -6.8275 -7.830

E(2) -0.00697 -0.0093 -0.0124 -0.0146 -0.0159 -0.017

E(3) 0.00006 0.0000 0.0000 0.0000 0.0000 0.000

Recoil 0.00033 0.0005 0.0008 0.0010 0.0011 0.001

Uehling 0.00000 0.0000 -0.0003 -0.0010 -0.0021 -0.004

WK 0.00000 0.0000 0.0000 0.0001 0.0003 0.001

SE 0.00020 0.0059 0.0395 0.1070 0.1852 0.303

VP-screen 0.00003 0.0002 0.0008 0.0016 0.0025 0.004

SE-screen -0.00033 -0.0019 -0.0052 -0.0089 -0.0120 -0.016

2-loop 0.00000 0.0000 0.0000 -0.0001 -0.0002 -0.001

NucPol 0.000

Sum -41.03860 -182.4185 -426.7520 -661.1463 -840.4160 -1042.837
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TABLE II: Ionization potentials (a.u.) and transition energies (eV) for the n = 2 states of lithium-

like ions.

Z 2s 2p1/2 2p3/2 2s − 2p1/2 2s − 2p3/2 Z 2s 2p1/2 2p3/2 2s − 2p1/2 2s − 2p3/2

10 -8.786573 -8.202716 -8.195174 15.8876 16.0928 56 -390.1477 -385.5147 -369.4820 126.069 562.342

11 -11.01975 -10.36338 -10.35140 17.8606 18.1867 57 -405.4716 -400.7209 -383.4008 129.272 600.577

12 -13.50530 -12.77626 -12.75813 19.8382 20.3315 58 -421.1434 -416.2728 -397.5850 132.534 641.057

13 -16.24373 -15.44179 -15.41539 21.8219 22.5403 59 -437.1677 -432.1748 -412.0351 135.863 683.892

14 -19.23555 -18.36047 -18.32322 23.8123 24.8258 60 -453.5492 -448.4315 -426.7520 139.261 729.189

15 -22.48144 -21.53287 -21.48176 25.8118 27.2026 61 -470.2924 -465.0478 -441.7361 142.713 777.058

16 -25.98197 -24.95961 -24.89107 27.8198 29.6850 62 -487.4023 -482.0293 -456.9878 146.206 827.621

17 -29.73794 -28.64142 -28.55128 29.8380 32.2907 63 -504.8851 -499.3811 -472.5078 149.772 881.033

18 -33.75011 -32.57898 -32.46252 31.8681 35.0371 64 -522.7451 -517.1085 -488.2968 153.379 937.386

19 -38.01921 -36.77309 -36.62490 33.9086 37.9411 65 -540.9890 -535.2170 -504.3554 157.063 996.849

20 -42.54621 -41.22462 -41.03860 35.9623 41.0242 66 -559.6227 -553.7123 -520.6846 160.830 1059.56

21 -47.33211 -45.93451 -45.70381 38.0308 44.3084 67 -578.6484 -572.6002 -537.2850 164.579 1125.56

22 -52.37781 -50.90371 -50.62065 40.1124 47.8148 68 -598.0810 -591.8871 -554.1573 168.545 1195.23

23 -57.68441 -56.13326 -55.78933 42.2089 51.5677 69 -617.9178 -611.5790 -571.3025 172.486 1268.47

24 -63.25298 -61.62422 -61.21002 44.3209 55.5918 70 -638.1702 -631.6827 -588.7214 176.535 1345.57

25 -69.08477 -67.37775 -66.88297 46.4505 59.9142 71 -658.8459 -652.2056 -606.4146 180.693 1426.73

26 -75.18098 -73.39500 -72.80837 48.5989 64.5620 72 -679.9497 -673.1556 -624.3826 184.876 1512.06

27 -81.54295 -79.67733 -78.98646 50.7662 69.5656 73 -701.4919 -694.5404 -642.6262 189.159 1601.82

28 -88.17198 -86.22608 -85.41744 52.9507 74.9548 74 -723.4766 -716.3678 -661.1463 193.441 1696.10

29 -95.06961 -93.04267 -92.10162 55.1558 80.7632 75 -745.9182 -738.6462 -679.9436 197.881 1795.26

30 -102.2373 -100.1285 -99.03921 57.3821 87.0231 76 -768.8199 -761.3839 -699.0192 202.345 1899.37

31 -109.6765 -107.4851 -106.2305 59.6316 93.7714 77 -792.1926 -784.5898 -718.3739 206.882 2008.71

32 -117.3890 -115.1141 -113.6758 61.9035 101.044 78 -816.0463 -808.2734 -738.0087 211.510 2123.51

33 -125.3765 -123.0172 -121.3753 64.1994 108.879 79 -840.3900 -832.4441 -757.9245 216.218 2244.00

34 -133.6408 -131.1962 -129.3294 66.5196 117.317 80 -865.2323 -857.1120 -778.1223 220.966 2370.38

35 -142.1836 -139.6528 -137.5384 68.8659 126.401 81 -890.5884 -882.2884 -798.6029 225.855 2503.05

36 -151.0070 -148.3890 -146.0027 71.2399 136.174 82 -916.4651 -907.9848 -819.3671 230.760 2642.17

37 -160.1129 -157.4066 -154.7224 73.6423 146.682 83 -942.8748 -934.2122 -840.4160 235.721 2788.04

38 -169.5035 -166.7079 -163.6981 76.0731 157.974 84 -969.8326 -960.9831 -861.7507 240.806 2941.06

39 -179.1809 -176.2949 -172.9300 78.5335 170.097 85 -997.3441 -988.3106 -883.3720 245.814 3101.34

40 -189.1475 -186.1698 -182.4185 81.0253 183.104 86 -1025.424 -1016.208 -905.2811 250.776 3269.26

41 -199.4054 -196.3351 -192.1641 83.5488 197.047 87 -1054.097 -1044.691 -927.4787 255.954 3445.45

42 -209.9572 -206.7929 -202.1670 86.1041 211.982 88 -1083.366 -1073.772 -949.9662 261.083 3630.00

43 -220.8055 -217.5459 -212.4277 88.6964 227.969 89 -1113.254 -1103.467 -972.7445 266.311 3823.46

44 -231.9527 -228.5967 -222.9467 91.3199 245.066 90 -1143.741 -1133.791 -995.8155 270.743 4025.25

45 -243.4017 -239.9480 -233.7242 93.9791 263.338 91 -1174.936 -1164.768 -1019.179 276.669 4238.37

46 -255.1554 -251.6026 -244.7608 96.6765 282.849 92 -1206.719 -1196.406 -1042.837 280.652 4459.46

47 -267.2166 -263.5631 -256.0570 99.4141 303.667 93 -1239.273 -1228.736 -1066.790 286.708 4693.50

48 -279.5882 -275.8327 -267.6132 102.192 325.858 94 -1272.477 -1261.769 -1091.040 291.376 4937.14

49 -292.2738 -288.4144 -279.4299 105.020 349.502 95 -1306.418 -1295.529 -1115.588 296.308 5192.76

50 -305.2764 -301.3113 -291.5076 107.897 374.668 96 -1341.095 -1330.038 -1140.435 300.890 5460.25

51 -318.5993 -314.5269 -303.8468 110.816 401.436 97 -1376.544 -1365.321 -1165.582 305.400 5740.56

52 -332.2459 -328.0650 -316.4479 113.769 429.885 98 -1412.778 -1401.403 -1191.031 309.526 6034.05

53 -346.2207 -341.9290 -329.3114 116.781 460.124 99 -1449.814 -1438.309 -1216.782 313.055 6341.12

54 -360.5261 -356.1228 -342.4379 119.821 492.206 100 -1487.696 -1476.073 -1242.837 316.288 6662.94

55 -375.1674 -370.6500 -355.8279 122.923 526.255
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TABLE III: The present structure and recoil energies (eV) for the 2s−2p transitions of lithiumlike

ions are compared with other theoretical results. Blundell’s RMBPT energies [25] already include

recoil corrections. RCI [30] and St. Petersburg group’s results StPete [33] are structure energies

only.

2s − 2p1/2 2s − 2p3/2

Z Structure Recoil Blundell RCI StPete Structure Recoil Blundell RCI StPete

10 15.906 -0.004 15.903 15.907 15.906 16.110 -0.004 16.107 16.111 16.110

12 19.872 -0.005 19.867 19.872 20.364 -0.005 20.359 20.364

15 25.884 -0.006 25.878 25.886 25.885 27.272 -0.007 27.267 27.275 27.273

18 32.005 -0.008 31.998 32.006 35.167 -0.008 35.161 35.169

20 36.162 -0.010 36.154 36.167 36.163 41.213 -0.010 41.206 41.218 41.215

21 38.267 -0.009 38.268 44.532 -0.010 44.534

26 49.101 -0.012 49.106 49.103 65.030 -0.012 65.037 65.033

28 53.603 -0.014 53.603 75.560 -0.014 75.563

30 58.211 -0.014 58.199 58.213 87.789 -0.015 87.777 87.793

32 62.940 -0.014 62.928 62.948 62.942 102.00 -0.015 101.98 102.01 102.00

36 72.798 -0.016 72.801 137.60 -0.017 137.60

40 83.267 -0.019 83.250 83.270 185.14 -0.020 185.12 185.15

42 88.755 -0.019 88.740 88.774 88.759 214.39 -0.021 214.37 214.41 214.39

47 103.33 -0.023 103.34 307.20 -0.024 307.20

50 112.74 -0.023 112.73 112.74 379.03 -0.025 379.00 379.03

54 126.14 -0.025 126.13 126.17 126.14 497.88 -0.028 497.84 497.93 497.89

60 148.37 -0.030 148.37 148.38 737.35 -0.033 737.31 737.36

64 164.79 -0.032 164.81 164.74 947.61 -0.036 947.69 947.59

66 173.54 -0.033 173.47 1070.96 -0.038 1070.88

70 192.16 -0.036 192.17 192.10 1359.62 -0.042 1359.55 1359.56

74 212.46 -0.040 212.43 212.41 1713.27 -0.048 1713.40 1713.28

79 240.24 -0.046 240.26 2265.85 -0.056 2265.86

80 246.09 -0.047 246.11 246.13 2393.28 -0.057 2393.15 2393.32

82 258.20 -0.050 258.25 258.23 2667.29 -0.061 2667.43 2667.31

83 264.38 -0.052 264.43 2814.35 -0.064 2814.39

90 309.13 -0.065 309.17 309.21 309.78 4061.21 -0.084 4060.98 4061.42 4061.91

92 322.23 -0.071 322.33 322.29 322.33 4498.69 -0.092 4498.93 4498.79
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TABLE IV: The present screened 1-loop and 2-loop QED energies (eV) for the 2s− 2p transitions

of lithiumlike ions are compared with other theoretical results. Blundell’s results are from [25],

RCI and RCI-relax results are from [30] and [35], respectively, and St. Petersburg group’s results

StPete are from [31] unless otherwise specified. While Blundell includes estimates of higher-order

corrections, others are screened 1-loop results only.

2s − 2p1/2 2s − 2p3/2

Z 1-loop 2-loop Blundell RCI RCI-relax StPete 1-loop 2-loop Blundell RCI RCI-relax StPete

10 -0.014 0.000 -0.014 -0.014 -0.014 0.000 -0.014 -0.014

12 -0.029 0.000 -0.028 -0.028 0.000 -0.027

15 -0.066 0.000 -0.066 -0.067 -0.063 0.000 -0.062 -0.063

18 -0.129 0.000 -0.130 -0.131 -0.123 0.000 -0.122

20 -0.190 0.000 -0.191 -0.192 -0.192 -0.180 0.000 -0.178 -0.181

21 -0.228 0.000 -0.229a -0.214 0.000 -0.215a

26 -0.491 0.001 -0.493 -0.492b -0.457 0.001 -0.458 -0.457b

28 -0.639 0.001 -0.639b -0.592 0.001 -0.592b

30 -0.816 0.002 -0.810 -0.814 -0.753 0.002 -0.743

32 -1.024 0.002 -1.016 -1.025 -1.022 -0.941 0.002 -0.929 -0.942

36 -1.545 0.004 -1.543b -1.411 0.003

40 -2.228 0.005 -2.220 -2.230 -2.023 0.005 -2.000

42 -2.638 0.007 -2.630 -2.643 -2.390 0.006 -2.370 -2.400

47 -3.899 0.010 -3.900 -3.514 0.010 -3.512b

50 -4.831 0.013 -4.810 -4.830 -4.344 0.012 -4.310

54 -6.309 0.018 -6.290 -6.321 -6.310 -5.660 0.017 -5.620 -5.692

60 -9.107 0.027 -9.080 -9.100 -8.157 0.025 -8.110

64 -11.41 0.037 -11.43 -10.22 0.034 -10.30

66 -12.71 0.042 -12.72 -11.40 0.039

70 -15.64 0.056 -15.61 -15.64 -14.06 0.051 -13.99

74 -19.05 0.073 -19.06 -19.05 -17.19 0.067 -17.33

79 -24.07 0.101 -24.05 -21.88 0.093

80 -25.18 0.107 -25.12 -25.17 -22.94 0.099 -22.82

82 -27.51 0.121 -27.51 -27.51 -25.17 0.112 -25.40

83 -28.74 0.129 -28.74 -28.74 -26.36 0.120 -26.37 -26.33c

90 -38.54 0.197 -38.45 -38.50 -38.53 -38.55 -36.08 0.187 -35.87 -36.44 -36.09

92 -41.76 0.222 -41.68 -41.69 -41.73 -41.77c -39.38 0.212 -39.78 -39.39

aRef. [32].
bRef. [33].
cRef. [14].
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TABLE V: The 2s − 2p transition energies (eV) of lithiumlike ions. Blundell’s results are from

[25]. Unless otherwise specified, RCI results are from [30], St. Petersburg group’s results StPete

are from [31], and experimental results are from the NIST Atomic Spectra Database [36].

2s − 2p1/2 2s − 2p3/2

Z Present Blundell RCI StPete Expt Present Blundell RCI StPete Expt

10 15.888 15.889 15.889 15.88881 16.093 16.093 16.093 16.09330

12 19.838 19.839 19.8393 20.331 20.332 20.3320

15 25.812 25.812 25.813 25.8140 27.203 27.205 27.205 27.206

18 31.868 31.868 31.865 31.8672 35.037 35.039 35.0383

20 35.962 35.964 35.963 35.960 35.9625 41.024 41.028 41.028 41.0286

21 38.031 38.029a 38.03 44.308 44.309a 44.31

26 48.599 48.600 48.600b 48.5997 64.562 64.567 64.565b 64.5656

28 52.951 52.952b 52.9503 74.955 74.959b 74.9574

30 57.382 57.389 57.384 57.3843 87.023 87.033 87.0272

32 61.904 61.911 61.907 61.906 61.9023 101.04 101.06 101.05 101.043

36 71.240 71.245b 71.2391 136.17

40 81.025 81.040 81.030 183.10 183.12

42 86.104 86.120 86.110 86.1021 211.98 211.99 211.99 211.9706

47 99.414 99.430 99.438c 303.67 303.67b 303.67c

50 107.90 107.92 107.90 107.91d 374.67 374.68

54 119.82 119.84 119.82 119.82 119.82d 492.21 492.22 492.21

60 139.26 139.29 139.25 729.19 729.20

64 153.38 153.35 937.39 937.36

66 160.83 160.74 1059.56

70 176.54 176.56 176.44 1345.57 1345.56

74 193.44 193.33 193.33 1696.10 1696.03

79 216.22 216.17 2244.00

80 220.97 220.99 220.93 2370.38 2370.32

82 230.76 230.70 230.68 2642.17 2641.98 2642.26e

83 235.72 235.62 2788.04 2788.10f 2788.12g 2788.139h

90 270.74i 270.72 270.67 270.60 4025.25j 4025.10 4025.28f 4025.23k

92 280.65i 280.83 280.55 280.76g 280.645l 4459.46j 4459.48f 4459.37m

aRef. [32].
bRef. [33].
cBeam-foil, Ref. [37].
dBeam-foil, Ref. [38].
eEBIT 2008, Ref. [39].
fRCI with relaxed QED corrections, Ref. [35].
gRef. [14].
hEBIT, Ref. [5].
iInclude nuclear polarization corrections of 0.21 eV for Z = 90 and 0.30 eV for Z = 92.
jInclude nuclear polarization corrections of 0.23 eV for Z = 90 and 0.34 eV for Z = 92.
kEBIT, Ref. [40].
lEBIT, Ref. [41].

mEBIT, Ref. [42].
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